2012年2月24日金曜日

数学の記号を簡単に示す

LaTeX使うまでもない、本当にこんなメモ書き程度にチュチュっと書きたい時とか、

2chの数学板で質問するときとかに使えるある程度のお決まり。

 

【掲示板での数学記号の書き方例】
■数の表記
●スカラー:a,b,c,...,z, A,B,C,...,Z, α,β,γ,...,ω, Α,Β,Γ,...,Ω, ... (← ギリシャ文字はその読み方で変換可.)
●ベクトル:V=[V[1],V[2],...], |V> , V↑, vector(V) (← 混同しない場合はスカラーと同じ記号でいい.通常は縦ベクトルとして扱う.)
●テンソル(上下付き1成分表示):T^[i,j,k...]_[p,q,r,...], T[i,j,k,...;p,q,r,...]
●行列(1成分表示):M[i,j], I[i,j]=δ_[i,j]
●行列(全成分表示):M=[[M[1,1],M[2,1],...],[M[1,2],M[2,2],...],...], I=[[1,0,0,...]',[0,1,0,...],...] (← 行(または列ごと)に表示する.例)M=[[1,-1],[3,2]])

■演算・符号の表記
●足し算・引き算:a+b a-b
●掛け算:a*b, ab (← 通常"*"を使い,"x","×"は使わない.)
●割り算・分数1:a/b, a/(b+c), a/(bc) (← 通常"/"を使い,"÷"は使わない.)
●割り算・分数2:(a+b)/(c+d),a+(b/c),(a/b)+c(←括弧を用い分子分母を他の項と区別できるように表現する.)
●複号:a±b=a士b, a干b (← "±"は「きごう」で変換可.他に漢字の"士""干"なども利用できる.)
●内積・外積・3重積:a・b, axb, a・(bxc)=(axb)・c=det([a,b,c]), ax(bxc)
●累乗:a^b (x^2 はxの二乗)

■関数・数列の表記
●関数・数列:f(x), f[x] a(n), a[n], a_n
●平方根:√(a+b)=(a+b)^(1/2) (← "√"は「るーと」で変換可.)
●累乗根:[n] √(a+b)=(a+b)^(1/n)
●指数・指数関数:a^b, x^(n+1), exp(x+y)=e^(x+y) (← "^"を使う."exp"はeの指数.)
●対数・対数関数:log_{a}(b), log(x/2)=log_{10}(x/2), ln(x/2)=log_{e}(x/2) (← 底を省略する場合,"log"は常用対数,"ln"は自然対数.)
●三角比・三角関数:sin(a), cos(x+y), tan(x/2)
●行列式・トレース:|A|=det(A), tr(A)
●絶対値:|x|
●ガウス記号:[x] (← 関数の変数表示などと混同しないように注意.)
●共役複素数:z~
●転置行列・随伴行列:M', M† (← "†"は「きごう」で変換可.)
●階乗:n!=n*(n-1)*(n-2)*...*2*1, n!!=n*(n-2)*(n-4)*...
●順列・組合せ:P[n,k]=nPk, C[n.k]=nCk, Π[n,k]=nΠk, H[n,k]=nHk (← "Π"は「ぱい」で変換可.)

■微積分・極限の表記
●微分・偏微分:dy/dx=y', ∂y/∂x=y,x (← "∂"は「きごう」で変換可.)
●ベクトル微分:∇f=grad(f), ∇・A=div(A),∇xA=rot(A), (∇^2)f=Δf (← "∇"は「きごう」,"Δ"は「でるた」で変換可.)
●積分:∫[0,1]f(x)dx=F(x)|_[x=0,1], ∫[y=0,x]f(x,y)dy, ∬_[D]f(x,y)dxdy, ∮_[C]f(r)dl (← "∫"は「いんてぐらる」,"∬ ∮"は「きごう」で変換可.)
●数列和・数列積:Σ_[k=1,n]a(k), Π_[k=1,n]a(k) (← "Σ"は「しぐま」,"Π"は「ぱい」で変換可.)
●極限:lim_[x→∞]f(x) (← "∞"は「むげんだい」で変換可.)

■その他
●図形:"△"は「さんかく」,"∠"は「かく」,"⊥"は「すいちょく」,"≡"は「ごうどう」,"∽"は「きごう」で変換可.
●論理・集合:"⇔⇒∀∃∧∨¬∈∋⊆⊇⊂⊃∪∩"は「きごう」で変換可.
●等号・不等号:"≠≒≦≧≪≫"は「きごう」で変換可.

※ ここで挙げた表記法は一例であり,標準的な表記法からそうでないものまで含まれているので,
  後者の場合使う時にあらかじめことわっておいたほうがいいです.
※ 関数等の変数表示や式の括弧は,括弧()だけでなく[]{}を適当に組み合わせると見やすい場合があります.
※ 上記のほとんどの数学記号や上記以外の数学記号は大体「きごう」で順次変換できます.
☆ 分数の分母分子がどこからどこまでなのかよく分からない質問が多いです.括弧を沢山使ってください.

【一般的な記号の使用例】
a:係数,数列
b:係数,重心
c:定数,積分定数
d:微分,次数,次元,距離,外微分,外積
e:自然対数の底,単位元,分岐指数,基底,離心率
f:関数,多項式,基底
g:関数,多項式,群の元,種数,計量,重心
h:高さ,関数,多項式,群の元,類数,微小量
i:添え字,虚数単位,埋めこみ,内部積
j:添え字,埋めこみ,j-不変量,四元数体の基底
k:添え字,四元数体の基底,比例係数
l:添え字,直線,素数
m:添え字,次元,Lebesgue測度
n:添え字,次元,自然数
o:原点
p:素数,射影
q:素数,exp(2πiτ)
r:半径,公比
s:パラメタ,弧長パラメタ
t:パラメタ
u:ベクトル
v:ベクトル
w:回転数
x:変数
y:変数
z:変数(特に複素数変数)

A:行列,環,加群,affine空間,面積
B:行列,開球,Borel集合,二項分布
C:複素数体,連続関数全体の集合,組み合わせ,曲線,積分定数,Cantorの3進集合,チェイン複体
D:関数の定義域,微分作用素,判別式,閉球,領域,二面体群,Diniのderivative,全行列環
E:単位行列,楕円曲線,ベクトル束,単数群,辺の数
F:原始関数,体,写像,ホモトピー,面の数
G:群,位相群,Lie群
H:Hilbert空間,Hermite多項式,部分群,homology群,四元数体,上半平面,Sobolev空間
I:区間,単位行列,イデアル
J:Bessel関数,ヤコビアン,イデアル,Jacobson根基
K:体,K群,多項式環,単体複体,Gauss曲率
L:体,下三角行列,Laguerre多項式,L関数,Lipschitz連続関数全体の集合,関数空間L^p,線型和全体
M:体,加群,全行列環,多様体
N:自然数全体の集合,ノルム,正規部分群,多様体
O:原点,開集合,整数環,直交群,軌道,エルミート演算子
P:条件,素イデアル,Legendre多項式,順列,1点,射影空間,確率測度
Q:有理数体,二次形式
R:半径,実数体,環,可換環,単数規準,曲率テンソル,Ricciテンソル
S: 級数の和,球面,部分環,特異チェイン複体,対称群,面積,共分散行列
T:トーラス,トレース,線形変換
U:上三角行列,unitary行列,unitary群,開集合,単数群
V:ベクトル空間,頂点の数,体積
W:Sobolev空間,線形部分空間
X:集合,位相空間,胞複体,CW複体,確率変数,ベクトル場
Y:集合,位相空間,ベクトル場,球面調和関数
Z:有理整数環,中心

 

数学@2ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

のコピペ

 

本ブログもこの形式で統一したいと思います。



LaTeX使うまでもない、本当にこんなメモ書き程度にチュチュっと書きたい時とか、

2chの数学板で質問するときとかに使えるある程度のお決まり。

 

【掲示板での数学記号の書き方例】
■数の表記
●スカラー:a,b,c,...,z, A,B,C,...,Z, α,β,γ,...,ω, Α,Β,Γ,...,Ω, ... (← ギリシャ文字はその読み方で変換可.)
●ベクトル:V=[V[1],V[2],...], |V> , V↑, vector(V) (← 混同しない場合はスカラーと同じ記号でいい.通常は縦ベクトルとして扱う.)
●テンソル(上下付き1成分表示):T^[i,j,k...]_[p,q,r,...], T[i,j,k,...;p,q,r,...]
●行列(1成分表示):M[i,j], I[i,j]=δ_[i,j]
●行列(全成分表示):M=[[M[1,1],M[2,1],...],[M[1,2],M[2,2],...],...], I=[[1,0,0,...]',[0,1,0,...],...] (← 行(または列ごと)に表示する.例)M=[[1,-1],[3,2]])

■演算・符号の表記
●足し算・引き算:a+b a-b
●掛け算:a*b, ab (← 通常"*"を使い,"x","×"は使わない.)
●割り算・分数1:a/b, a/(b+c), a/(bc) (← 通常"/"を使い,"÷"は使わない.)
●割り算・分数2:(a+b)/(c+d),a+(b/c),(a/b)+c(←括弧を用い分子分母を他の項と区別できるように表現する.)
●複号:a±b=a士b, a干b (← "±"は「きごう」で変換可.他に漢字の"士""干"なども利用できる.)
●内積・外積・3重積:a・b, axb, a・(bxc)=(axb)・c=det([a,b,c]), ax(bxc)
●累乗:a^b (x^2 はxの二乗)

■関数・数列の表記
●関数・数列:f(x), f[x] a(n), a[n], a_n
●平方根:√(a+b)=(a+b)^(1/2) (← "√"は「るーと」で変換可.)
●累乗根:[n] √(a+b)=(a+b)^(1/n)
●指数・指数関数:a^b, x^(n+1), exp(x+y)=e^(x+y) (← "^"を使う."exp"はeの指数.)
●対数・対数関数:log_{a}(b), log(x/2)=log_{10}(x/2), ln(x/2)=log_{e}(x/2) (← 底を省略する場合,"log"は常用対数,"ln"は自然対数.)
●三角比・三角関数:sin(a), cos(x+y), tan(x/2)
●行列式・トレース:|A|=det(A), tr(A)
●絶対値:|x|
●ガウス記号:[x] (← 関数の変数表示などと混同しないように注意.)
●共役複素数:z~
●転置行列・随伴行列:M', M† (← "†"は「きごう」で変換可.)
●階乗:n!=n*(n-1)*(n-2)*...*2*1, n!!=n*(n-2)*(n-4)*...
●順列・組合せ:P[n,k]=nPk, C[n.k]=nCk, Π[n,k]=nΠk, H[n,k]=nHk (← "Π"は「ぱい」で変換可.)

■微積分・極限の表記
●微分・偏微分:dy/dx=y', ∂y/∂x=y,x (← "∂"は「きごう」で変換可.)
●ベクトル微分:∇f=grad(f), ∇・A=div(A),∇xA=rot(A), (∇^2)f=Δf (← "∇"は「きごう」,"Δ"は「でるた」で変換可.)
●積分:∫[0,1]f(x)dx=F(x)|_[x=0,1], ∫[y=0,x]f(x,y)dy, ∬_[D]f(x,y)dxdy, ∮_[C]f(r)dl (← "∫"は「いんてぐらる」,"∬ ∮"は「きごう」で変換可.)
●数列和・数列積:Σ_[k=1,n]a(k), Π_[k=1,n]a(k) (← "Σ"は「しぐま」,"Π"は「ぱい」で変換可.)
●極限:lim_[x→∞]f(x) (← "∞"は「むげんだい」で変換可.)

■その他
●図形:"△"は「さんかく」,"∠"は「かく」,"⊥"は「すいちょく」,"≡"は「ごうどう」,"∽"は「きごう」で変換可.
●論理・集合:"⇔⇒∀∃∧∨¬∈∋⊆⊇⊂⊃∪∩"は「きごう」で変換可.
●等号・不等号:"≠≒≦≧≪≫"は「きごう」で変換可.

※ ここで挙げた表記法は一例であり,標準的な表記法からそうでないものまで含まれているので,
  後者の場合使う時にあらかじめことわっておいたほうがいいです.
※ 関数等の変数表示や式の括弧は,括弧()だけでなく[]{}を適当に組み合わせると見やすい場合があります.
※ 上記のほとんどの数学記号や上記以外の数学記号は大体「きごう」で順次変換できます.
☆ 分数の分母分子がどこからどこまでなのかよく分からない質問が多いです.括弧を沢山使ってください.

【一般的な記号の使用例】
a:係数,数列
b:係数,重心
c:定数,積分定数
d:微分,次数,次元,距離,外微分,外積
e:自然対数の底,単位元,分岐指数,基底,離心率
f:関数,多項式,基底
g:関数,多項式,群の元,種数,計量,重心
h:高さ,関数,多項式,群の元,類数,微小量
i:添え字,虚数単位,埋めこみ,内部積
j:添え字,埋めこみ,j-不変量,四元数体の基底
k:添え字,四元数体の基底,比例係数
l:添え字,直線,素数
m:添え字,次元,Lebesgue測度
n:添え字,次元,自然数
o:原点
p:素数,射影
q:素数,exp(2πiτ)
r:半径,公比
s:パラメタ,弧長パラメタ
t:パラメタ
u:ベクトル
v:ベクトル
w:回転数
x:変数
y:変数
z:変数(特に複素数変数)

A:行列,環,加群,affine空間,面積
B:行列,開球,Borel集合,二項分布
C:複素数体,連続関数全体の集合,組み合わせ,曲線,積分定数,Cantorの3進集合,チェイン複体
D:関数の定義域,微分作用素,判別式,閉球,領域,二面体群,Diniのderivative,全行列環
E:単位行列,楕円曲線,ベクトル束,単数群,辺の数
F:原始関数,体,写像,ホモトピー,面の数
G:群,位相群,Lie群
H:Hilbert空間,Hermite多項式,部分群,homology群,四元数体,上半平面,Sobolev空間
I:区間,単位行列,イデアル
J:Bessel関数,ヤコビアン,イデアル,Jacobson根基
K:体,K群,多項式環,単体複体,Gauss曲率
L:体,下三角行列,Laguerre多項式,L関数,Lipschitz連続関数全体の集合,関数空間L^p,線型和全体
M:体,加群,全行列環,多様体
N:自然数全体の集合,ノルム,正規部分群,多様体
O:原点,開集合,整数環,直交群,軌道,エルミート演算子
P:条件,素イデアル,Legendre多項式,順列,1点,射影空間,確率測度
Q:有理数体,二次形式
R:半径,実数体,環,可換環,単数規準,曲率テンソル,Ricciテンソル
S: 級数の和,球面,部分環,特異チェイン複体,対称群,面積,共分散行列
T:トーラス,トレース,線形変換
U:上三角行列,unitary行列,unitary群,開集合,単数群
V:ベクトル空間,頂点の数,体積
W:Sobolev空間,線形部分空間
X:集合,位相空間,胞複体,CW複体,確率変数,ベクトル場
Y:集合,位相空間,ベクトル場,球面調和関数
Z:有理整数環,中心

 

数学@2ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

のコピペ

 

本ブログもこの形式で統一したいと思います。


0 件のコメント:

コメントを投稿